
The .NET Profiling API

• The .NET Profiler API is available since CLR/.NET Framework 1.0

• A Profiler depends on the CLR – and not on the .NET Framework

Notable Features

• Assembly loading and unloading events

• Just-in-time (JIT) compilation and code-pitching events

• ReJIT

• Thread creation and destruction events

• Function entry and exit events

• Exceptions

• Transitions between managed and unmanaged code execution

• Information about runtime suspensions

• …

OVERVIEW

2

• Program

o The .NET application to monitor

• CLR

o Required to execute Program

o Loads Profiler DLL

• Profiler DLL

o Unmanaged

o Loaded by CLR into target process

• IPC mechanism

o Interface between Profiler DLL and UI

• Profiler user interface

o Performs costly operations

o May be a managed application

PROFILING ARCHITECTURE

3

STARTUP

4

Startup

• Process gets created

• CLR is loaded

• CLR loads Profiler DLL

• Profiler subscribes to events

Execute

• Application executes

• Profiler receives events

• Profiler communicates with Profiler user interface

Shutdown

• CLR informs Profiler of shutdown/detach

• Profiler DLL is unloaded

• Process terminates

Common Object Model (COM)

• Platform and language independent system

• Allows components to locate and communicate with each other

• Based on classes and interfaces

• Each class and interface has a GUID (called CLID or IID)

• COM servers

o Implemented as DLLs exporting specific functions

o Register supported CLIDs in the windows registry

• COM clients

o Request implementations via CLID

o Request specific interfaces from a class via IID

A (VERY) BRIEF INTRODUCTION TO COM

5

How does the CLR know if and which profiler DLL to load?

• Environment Variables

o COR_ENABLE_PROFILING=1

o Must be set to 1 to enable profiling

o COR_PROFILER_PATH_32=full path to the profiler DLL

o COR_PROFILER_PATH_64=full path to the profiler DLL

o COR_PROFILER_PATH=full path to the profiler DLL

o If present, takes precedence over COR_PROFILER even if invalid

o COR_PROFILER={CLSID of profiler}

o The GUID of the COM class implementing ICorProfilerCallback

o Must be present even if COR_PROFILER_PATH* is used

Prefix CORECLR_ is also allowed

It’s also possible to attach a profiler after application startup (with restrictions)

USING A PROFILER

6

ID: Generated at runtime, typically
passed to callbacks

Token: Generated at compile time

IDENTIFYING TYPES AND FUNCTIONS

7

GetTokenAndMetaDataFromFunction

Token IMetaDataImport

GetMethodProps

Name

Function ID

Different approaches possible

• Using Enter/Leave/Tailcall hooks

o Profiler API inserts hook code when method is JITed

o Hooks must be implemented naked/in assembler

o Hooks can be installed selectively

o Hooks can be activated/deactivated during execution

• Instrumenting methods by rewriting IL code

o Profiler modifies IL code when method is JITed

o ReJIT feature allows profiler to add/remove instrumentation as required

• Sampling

o A periodic event (e.g. timer) is used to capture call stacks of threads

o Prone to deadlocks and race conditions (as one thread suspends another)

PROFILING METHOD CALLS

8

MyMethod

{

}

Enter Hook

ENTER/LEAVE/TAILCALL HOOKS

9

Prolog

Body

Leave Hook

Epilog

C++ Class

Profiler::OnEnter

CLR

C++ Function

OnEnter

Assembler

EnterNaked

Original Function Body

• New code is inserted
• Original IL code must be moved
• Header must be adjusted
• Exception Handling must be

adjusted

Modified Function Body

ANATOMY OF A (MODIFIED) FUNCTION BODY

10

Header

IL Code

Exception Handling

Header

IL Code

Exception Handling

New

New

Original Function Body

• Replace only opcodes
• Nothing else to do ;)

Modified Function Body

ANATOMY OF A (MODIFIED) FUNCTION BODY

11

Header

IL Code

Exception Handling

Header

IL Code

Exception Handling

od

C# Code

Fat Header

IL Code

REWRITING IL CODE

12

public void MyMethod(int value)
{

if (value == 0) // if (value != 0)
{
Console.WriteLine(

"{0} == 0", value);
}
else
{
Console.WriteLine(

"{0} != 0", value);
}

}

13 30 Flags & Size
02 00 MaxStack
32 00 00 00 CodeSize
04 00 00 11 LocalVarSigTok

nop 00
ldarg.1 03
ldc.i4.0 16
ceq FE 01 <- cgt.un FE 03
stloc.0 0A
ldloc.0 06
brfalse.s 2C 15
nop 00
ldstr 72 19 00 00 70
ldarg.1 03
box 8C 2E 00 00 01
call 28 2A 00 00 0A
nop 00
nop 00
br.s 2B 13
nop 00
ldstr 72 2B 00 00 70
ldarg.1 03
box 8C 2E 00 00 01
call 28 2A 00 00 0A
nop 00
nop 00
ret 2A

Allows the profiler to, well, re-JIT compile method bodys

• Profiler may request to re-JIT a method during execution of the application

• In the callback the profiler modifies the IL body

• New body is used next time when method is executed

• Profiler may request to revert the IL body to its original state

Comes with limitations

• No managed Debugging

• Can not be used with NGEN images

• Not that easy when methods are inlined

• Profiler must be attached at startup

REJIT

13

• Profiling (Unmanaged API Reference)
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/

• David Broman's CLR Profiling API Blog
https://blogs.msdn.microsoft.com/davbr/

• .NET Core runtime GitHub project (CoreCLR)
https://github.com/dotnet/coreclr/blob/master/src/vm/profilinghelper.cpp

• Rewrite MSIL Code on the Fly with the .NET Framework Profiling API
MSDN Magazine September 2003, Aleksandr Mikunov

• CLR Profiler
https://clrprofiler.codeplex.com/

Images:

• Profiling architecture (Slide 3): https://docs.microsoft.com/en-
us/dotnet/framework/unmanaged-api/profiling/profiling-overview

14

LINKS

https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/profiling-overview
https://blogs.msdn.microsoft.com/davbr/
https://github.com/dotnet/coreclr/blob/master/src/vm/profilinghelper.cpp
http://download.microsoft.com/download/3/a/7/3a7fa450-1f33-41f7-9e6d-3aa95b5a6aea/MSDNMagazineSeptember2003en-us.chm
https://clrprofiler.codeplex.com/
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/profiling-overview

